反函数是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做反函数。记作y=f^-1(x)。
反函数的性质 (1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(2)一个函数与它的反函数在相应区间上单调性一致。
所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。 函数的定义 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。
反函数是:设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数。
关于反函数的概念如下:反函数的概念,一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了【arc+函数名】的形式表示反三角函数,而不是f-1(x)。
那么求反函数就是用y来表示x。(1)先求原函数的值域M (2)从原函数式子中,将x用y表示,写成x=g(y)的形式 (3)写成反函数,后面加上定义域,即原函数的值域。
1、例1:求y=x2,x∈(0,2)的反函数。解:直接函数在其定义域内单调递增,因此有反函数,于是按上述步骤:综上:题中直接函数的反函数为y=x,(x∈【0,4】)。
2、求反函数的步骤: 将原函数f(x)化为y=f(x); 将x用y替换,得到y=f(y); 令y=g(x),解得g(x)=f(g(x)); 将g(x)可以化为f(x),得到f(x)=g(f(x)),即得到f(x)的反函数g(x)。
3、求反函数的步骤:利用反解方程,将x看成未知数,y看成已知数,解出x的值。将这个式子中的x,y兑换位置,就得到反函数的解析式。求反函数的定义域。
反函数是指,对于一个函数 f(x),如果存在一个函数 g(y),使得对于 f(x) 的每一个值 y,都有 g(y) = x,那么 g(y) 就是 f(x) 的反函数。
反函数也原函数相对y=x这条直线对称。所以如果反函数就是原函数本身,那么原函数也必须相对y=x对称。函数的图象关于y=x对称 点(y,x)也在图象上。
反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。反函数的符号。
反函数是改变函数中的自变量和因变量,利用已知函数求出用因变量表示自变量的关系式,此时原函数的定义域变成值域,值域变成定义域。
反函数释义:对于表示y依x而变的已知函数y=f(x)来说,表示x依y而变的函数x=g(y)就叫做它的反函数。如是y=x3的反函数。