如果:AA=E(E为单位矩阵,A表示“矩阵A的转置”。)则n阶实矩阵A称为正交矩阵性质:方阵A正交的充要条件是A的行(列) 向量组是单位正交向量组。
1、在矩阵论中,正交矩阵是一个方块矩阵,其行向量和列向量都是正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵。
2、正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
3、正交矩阵定义是A的转置乘A等于单位阵E,即AT*A=E,等式两边同乘A的逆,就可以得到A的转置等于A的逆。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
1、在矩阵论中,正交矩阵是一个方块矩阵,其行向量和列向量都是正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵。
2、正交矩阵是一个方阵,其列向量两两垂直且长度为1,行向量也满足同样的条件。换句话说,正交矩阵中的列向量互相正交且归一化。
3、正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
1、在矩阵论中,正交矩阵是一个方块矩阵,其行向量和列向量都是正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵。
2、正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
3、正交矩阵定义是A的转置乘A等于单位阵E,即AT*A=E,等式两边同乘A的逆,就可以得到A的转置等于A的逆。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
4、正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。
5、AAT的转置=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵。可以直接计算A与A转置的乘积,如果算出来是单位阵,则A是正交阵。
6、正交矩阵是方块矩阵,行向量和列向量皆为正交的单位向量。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。