不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
不确定原理是指量子力学中,任意两个不对易得物理量不能同时被精确的测量。
又名“测不准原理”、“不确定关系”,是量子力学的一个基本原理。
不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。
在量子力学中,不确定性原理指在一次试验观测中不能同时确定一个粒子的动量和位置,也就是速度和位置。当速度确定的准确,位置便不准确 位置准确,速度便不准确。
提到量子力学,不确定性原理就是一个绕不开的话题。不确定性原理非常直观地体现了量子力学和经典力学之间的差异,而且表述还非常简单。
不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
又名“测不准原理”、“不确定关系”,英文Uncertainty principle,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。
关于人类不确定性原理有以下提到量子力学,不确定性原理就是一个绕不开的话题。不确定性原理非常直观地体现了量子力学和经典力学之间的差异,而且表述还非常简单。
不确定性原理,又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。
不确定性原理由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克斯常数除于4π,这表明微观世界的粒子行为与宏观物质很不一样。
1、不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
2、不确定原理是指量子力学中,任意两个不对易得物理量不能同时被精确的测量。
3、不确定原理指的是:不确定性原理是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除以4π,这表明微观世界的粒子行为与宏观物质很不一样。
1、不确定性原理(Uncertainty Principle,原先译作测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。
2、不确定原理是指量子力学中,任意两个不对易得物理量不能同时被精确的测量。
3、这种说法很流行,很多科普文都这样介绍不确定性原理,他们告诉你:正是因为你用光子测量电子位置的操作干扰了电子的动量,所以无法同时确定电子的位置和动量。
1、海森堡不确定性原理是陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。
2、海森堡不确定性原理一般指不确定性原理,这个理论是说:你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克常数除以4π(ΔxΔp≥h/4π),这表明微观世界的粒子行为与宏观物质很不一样。
3、不确定性原理(Uncertainty Principle),早期也译作测不准原理,由海森堡于1927年提出[1],不确定性原理表明,对于一个微观粒子,其位置与动量不能同时具有确定值,两者标准差的乘积必然大于一个常数。
4、海森堡不确定性原理又名“测不准原理”、“不确定关系”,英文Uncertainty principle,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。
5、海森堡不确定性原理是对于一个微观粒子,其位置与动量不能同时具有确定值,两者标准差的乘积必然大于一个常数。不确定性原理是量子物理的最重要最基本的原理之一。动量就完全不确定,动量确定,位置就完全不确定。
6、不确定性原理(Uncertainty principle)是海森堡于1927年提出的物理学原理。其指出:不可能同时精确确定一个基本粒子的位置和动量。