1、四个重要基本不等式是平方平均数、算术平均数、几何平均数、调和平均数。基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
1、四个基本不等式公式:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)a+b≥2√(ab)。
2、a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)当且仅当a=b时,等号成a+b≥2√(ab)。
3、四个基本不等式如下:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立) a+b≥2√(ab)。(当且仅当a=b时,等号成立)ab≤(a+b)/2]。
4、基本不等式公式:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。
基本不等式公式:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。
基本不等式中常用公式:(1)√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)(2)√(ab)≤(a+b)/2。
常用不等式公式:①√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。②√(ab)≤(a+b)/2。③a+b≥2ab。④ab≤(a+b)/4。
基本不等式a^2+b^2≧2ab 对于任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
1、基本不等式公式:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。
2、四个基本不等式公式:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)a+b≥2√(ab)。
3、基本不等式中常用公式:(1)√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)(2)√(ab)≤(a+b)/2。
4、基本不等式√ab≦(a+b)/a^2+b^2≧2ab、b/a+a/b≧2。用符号“”“”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
四个基本不等式公式:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)a+b≥2√(ab)。
四个基本不等式如下:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立) a+b≥2√(ab)。(当且仅当a=b时,等号成立)ab≤(a+b)/2]。
④不等式F(x)G(x)0与不等式同解;不等式F(x)G(x)0与不等式同解。
高中4个基本不等式链:√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。
1、常用不等式公式:①√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。②√(ab)≤(a+b)/2。③a+b≥2ab。④ab≤(a+b)/4。
2、四个基本不等式公式:a+b≥2ab。(当且仅当a=b时,等号成立)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)a+b≥2√(ab)。
3、基本不等式:√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b|。
4、高中4个基本不等式链:√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。
5、基本不等式公式有:a+b≥2√。a大于0,b大于0,当且仅当a=b时,等号成立。
6、基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。